Distinguishing Direct and Indirect Photoelectrocatalytic Oxidation Mechanisms Using Quantitative Single-Molecule Reaction Imaging and Photocurrent Measurements

نویسندگان

  • Justin B. Sambur
  • Peng Chen
چکیده

Light-driven semiconductor-catalyzed oxidation reactions are of fundamental importance in photocatalysis and photoelectrocatalysis for removing organic contaminants in wastewater, solar energy conversion, and fine chemical synthesis. The underlying reaction mechanism is often unclear because it is difficult to measure directly and specifically the semiconductorcatalyzed reaction rates. For example, an organic molecule could be oxidized “directly” by photogenerated holes that are transported from the semiconductor interior to the semiconductor−electrolyte interface or “indirectly” by photogenerated intermediates (e.g., hydroxyl radical, superoxide anion, or hydrogen peroxide) that are produced at the semiconductor surface in aqueous solution. New experimental approaches that can distinguish these pathways are thus desirable. Here we introduce quantitative single-molecule, single-particle fluorescence imaging to measure the photoelectrocatalytic oxidation rate of a model organic substrate, amplex red, on the surface of individual rutile TiO2 nanorods. Our approach probes the oxidation product selectively before it becomes further degraded (which complicates bulk reaction kinetics measurements) while also avoiding interparticle charge transfer kinetics. By examining the reaction rate scaling relations versus light intensity at fixed potential and versus potential at fixed light intensity, together with the corresponding photocurrent scaling reactions, we demonstrate that amplex red oxidation on a TiO2-nanorod photoanode proceeds via an indirect mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A strategy for degradation of 2,5-dichlorophenol using its photoelectrocatalytic oxidation on the TiO2/Ti thin film electrode

In this work, the photoelectrocatalytic (PEC) degradation of 2,5-dichlorophenol can be used for its removal from aqueous solution. To study this activity, a TiO2 thin film modified titanium sheet (TiO2/Ti) was fabricated by anodizing Ti plates using a two electrode system under the constant bias voltage of 20 V for 20 min in a solution of 0.2% (v/v) HF followed by calcinat...

متن کامل

Silver/titania nanocomposite-modified photoelectrodes for photoelectrocatalytic methanol oxidation

Silver deposited titania (Ag/TiO2) nanocomposite thin films were fabricated by the simple sonochemical deposition of Ag on preformed aerosol-assisted chemical vapor deposited TiO2 thin films. The photelectrocatalytic performance of a newly fabricated Ag/TiO2-modified photoelectrode was studied for methanol oxidation under simulated solar AM 1.5G irradiation (100 mW/cm2). The Ag/TiO2-modified ph...

متن کامل

Large-scale preparation of nanoporous TiO2 film on titanium substrate with improved photoelectrochemical performance

Fabrication of three-dimensional TiO2 films on Ti substrates is one important strategy to obtain efficient electrodes for energy conversion and environmental applications. In this work, we found that hierarchical porous TiO2 film can be prepared by treating H2O2 pre-oxidized Ti substrate in TiCl3 solution followed by calcinations. The formation process is a combination of the corrosion of Ti su...

متن کامل

Evaluating Anthropometric Dimensions of the Femur Using Direct and Indirect Methods

Introduction: The human anthropometric characteristics are surveyed in anthropology. Anthropology is used in archeology, rehabilitation and legal medicine. The purpose of this study was to determine femur which has a special place in the science of anthropometry. Methods: To measure the femur, both direct and indirect methods was used. The direct method of measuring the 113 femur in dissection...

متن کامل

Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles

Bubble formation and growth on a water-splitting semiconductor photoelectrode under illumination with above-bandgap radiation provide a direct measurement of the gas-evolving reaction rate. Optical microscopy was used to record the bubble growth on single-crystal strontium titanate immersed in basic aqueous electrolyte and illuminated with UV light at 351/364 nm from a focused argon laser. By a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016